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The notion of proof is arguably a fundamental concept in mathematics. Mathematics

curricula expect students to develop understanding of proof through explaining and

justifying their mathematical responses, and communicating these responses in coherent

ways. This study reports the findings from a sample of students in Years 5 and 6 in two

schools to a question that asked them to prove a mathematical statement of equality. Survey

results from 56 students, and twelve follow-up interviews, were analysed using the SOLO

model. Implications from the findings that most students could not use a zero statement to

justify their responses, and that answers appeared to be related to language-based factors

will be discussed.

Proof is one of the central aspects of mathematics, but there is, amongst mathematics

educators, a broad view of what is meant by “proof”. Milton and Reeves (2003) describe

proof as a “ … valid chain of reasoning” (p. 384). An acceptable proof, as indicated in 

curriculum documents, is determined by the context and the mathematical development of 

the learner. Students are expected to make, test and justify conjectures, explain solutions, 

and seek and evaluate alternative solutions (e.g., Australian Education Council, 1990; 

Department for Education and Employment, 1999). The National Council of Teachers of 

Mathematics (NCTM) Principles and Standards (2000) indicate that initially students will 

offer one example from personal experience as evidence of the truth of a statement. In later

grades, students will offer several specific examples as proof of a proposition or conjecture

and will accept that one counter example serves to disprove a statement (Carpenter & 

Franke, 2001; Carpenter & Levi, 2000). A more sophisticated approach relies on the use of 

generic examples that are representative of a class of numbers or objects, followed by the

use of general rules and statements which disregard the need for substantiating

illustrations.

In order for students to develop a useful concept of proof, they need to have

experiences where proof, in some form, is required. Southwell (2002), in a useful review of 

the place of argumentation and proof in the primary classroom, indicates that processes of 

explanation and justification should be encouraged as precursors to formal notions of 

proof. Where students can explain and justify their answers to their own satisfaction this

may be considered as a level of proof.

Milton and Reeves (2003) suggest that if proof is experienced in the number strand 

children’s algebraic reasoning will develop. The move from arithmetic to algebraic

thinking has been identified as a key aspect of mathematics curriculum reform (Carpenter

& Levi, 2000). Arithmetic thinking consists largely of a procedural approach to executing 

operations on numbers in order to obtain an answer (Mason, 1996). In contrast, algebraic 

thinking focuses on the structure of a mathematical statement and uses such statements to

describe generalisations succinctly and unambiguously (Macgregor, 1993). The shift in 

thinking requires, for example, that students be able to generalise arithmetic concepts,

151



perceive relationships between numbers and operators (Carpenter & Franke, 2001), and 

accept “unclosed” answers (Biggs & Collis, 1982).

Many difficulties that students encounter when moving from arithmetic to algebra are 

well documented. In algebra, the arithmetic operators, add, subtract, multiply and divide,

are used to relate terms rather than act as instructions to carry out a procedure, which is a 

common understanding of children (Esty & Teppo, 1996). Understanding of the role of the 

equals sign becomes a key determinant of progress, away from a perceived command to 

“get an answer” (Carpenter & Franke, 2001; Esty & Teppo, 1996) to one of relating 

mathematical statements. It is the understanding of the relational role of the equality sign

that leads to the ability to generalise from arithmetic results (Carpenter & Levi, 2000; 

Macgregor & Stacey, 1999).

Another key aspect of algebraic thinking is the move to abstraction associated with the 

representation of a variable by a letter (Küchemann, 1981). Students may interpret letters 

as shorthand for the name of an object (e.g., m for matches). Others understand that letters 

represent numbers, but may interpret these numbers as alphabetical referents (e.g., b = 2 

and g = 7) (Macgregor & Stacey, 1997). At a more sophisticated level, letters can be seen 

as representing numbers, but no particular numbers. Dawe (1993) refers to these as 

“dummy variables”, or place holders, that is, the letters stand in place of any number and

the equation becomes an identity: a statement of a general mathematical truth. Two groups 

of students who see letters as numbers can be identified. The first group of students 

recognises that numbers may be randomly assigned to letters, with the understanding that 

within an algebraic statement, a particular letter represents the same number. The second

group of students sees letters as variables: that as the value of one letter is changed, so the 

values of others change according to the algebraic relationship connecting the letters

(Küchemann, 1981).

The ability to recognise such relationships may grow with a developing language 

facility and the ability to understand the structure of everyday spoken and written text 

(MacGregor & Price, 1999). Students who can deal with everyday language by relating 

sequences of sentences or paragraphs to make meaning, and who recognise this process, 

can more effectively read mathematical statements because they seek out meaningful

relationships expressed symbolically in those statements. MacGregor (1993) has noted that 

weaker readers read only from left to right, often decoding mathematical information in the 

order given. This “left-to-right” strategy may also reflect the arithmetic experience of

students who are often presented with arithmetic problems to be completed in this order.

The sequential processing of arithmetic problems and the resulting procedural

understandings may be countered by students meeting arithmetic statements which are not 

closed, or have the equality sign placed so as not to lead only to left-to-right processing

(Carpenter & Levi, 2000). Subsequent difficulties that ensue when students encounter 

algebraic statements may be diminished by such approaches (Carpenter & Franke, 2001), 

although Carpenter and Levi (2000) note the persistence of students’ understanding of the

equality sign as an operator. 

Research questions 

This report describes the findings from a study in which students from two Year 5/6 

composite classes were presented with a generalised statement of equality and asked to 

show that the statement was true. The research questions for the study were: 

1. How do upper primary students “prove” a straightforward statement of equality 

presented in abstract terms? and 
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2. To what extent do language factors, such as left-to-right processing impact on 

students’ algebraic thinking?

Methodology

The 56 students involved in this study were in two “Opportunity Classes” (OC) in two 

different primary schools in a NSW rural town. To be included in these classes, students 

undertook a selective test in Year 4 and, on the basis of the ranked results, the top students 

were invited to join one of the two OC groups. They remained in the group for two years, 

throughout Years 5 and 6. For the purposes of the study reported here, no distinction is 

made between the responses of Year 5 and Year 6 students, since they were in classrooms

where they experienced the same teaching program.

As part of a wider study of the mathematical proficiency of students in OC groups, 

students attempted the following question, adapted from one published by Reys and 

associates (2001): 

The teacher writes this equation on the board. How would you show it to be true?

g + b – b = g

The question was answered twice, in June and November, as part of a larger written 

survey, intended to provide two measures of proficiency at different points in time. The 

first survey was presented by the class teachers, using an administration manual prepared

by the researchers. The second was administered by researchers. Both surveys required 

students to provide an individual written response. On the same day as the second

administration, six students from each class, selected by the teachers as being poor, 

average or good at mathematics, were interviewed by researchers. The algebra question 

was also presented in the interview, and the students were shown their written responses in 

order to stimulate their recall of their thinking. Extension questions were also asked, with a 

focus on the order of the letters and operators in the equation.

Responses were coded using the SOLO (Structure of the Observed Learning Outcome)

model of Biggs and Collis (1982, 1991) to judge their quality. The basis for this judgment

was the structural complexity of the performance, described as Unistructural (U) – making

use of one aspect only of the information, Multistructural (M) – using several pieces of 

information, usually in sequence, and Relational (R) – providing a response that ties 

together all aspects of the information supplied to give an integrated solution. This “U-M-

R” cycle has been extensively documented in school education, and two sequential U-M-R 

cycles have been identified in many different situations (Pegg, 2003). Although, U-M-R 

cycles may occur in any of the modes of thinking identified by neo-Piagetian researchers 

(Biggs & Collis, 1991), in this study, the target mode of thinking was the concrete-

symbolic mode.

Results

Survey Responses

In the first survey, 17 students did not answer the question. The remaining 39 

responses were coded using SOLO. Results from the first survey are summarised in Table 

1, including examples of the responses to exemplify the coding. Responses from students

who showed little understanding were categorised as prestructural (P); those providing a 

single numerical example were classified as unistructural (U1) in the first cycle in the
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concrete-symbolic mode; multistructural (M1) responses in the first cycle in the concrete-

symbolic mode were characterised by substitution of numbers for letters; and first cycle

relational responses (R1) were those which acknowledged some abstraction but provided a

concrete, numerical example. Two students gave responses that recognised the equality

relationship b – b = 0, and that did not require a numerical example. These were coded as 

U2, a second cycle unistructural response, because they implicitly understood the 

relationship inherent in the statement but were able to focus only on the notion that

because b was both added and taken away the b terms cancelled out and left g, making the 

statement correct.

Table 1. 

Survey 1 response codings

Code Number Example

P 3 g + = unknown-b g + g not enough info 

U1
8 Because g could equal 5 and b could equal 1. 

M1
20 The way I would answer this problem is by putting numbers in the 

place of letters, I would also split the problem into different parts.

The answer is True  3 + 2 – 2 + 3  3 + 2 = 5  5 – 2 = 3 

R1
6 There is a g you add a b and take the b back off which takes you 

back to g.  6 + 4 – 4 = 6 is the same as g + b – b = g

U2 2 g + b – b = g  you cross out the b’s because they equal each other 

out, so g = g 

About half of the first survey responses (51.3%) were coded as M1. This was not

unexpected, given the age and mathematical experience of these students. The class

teachers indicated that they had completed little work in the patterns and algebra strand of

the syllabus at the time of the first survey.

Of the 56 students in the study, 33 provided valid responses to both surveys. Figure 2 

shows the proportions of responses in each SOLO level in each survey from these matched

students. The results indicate that there was some growth in understanding over the period 

of the study. The higher proportion of R1 responses suggests that students are beginning to 

argue in terms of generalisations, although still with the need for a concrete example.
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Figure 1. SOLO categories from matched students’ survey responses.

Interview Responses 

Interviews allowed a deeper exploration of the students’ understanding. They were 

initially asked the same question, and, after they had responded again, were prompted with 

their previous survey answer and asked to explain what they had done. Of those students 

who changed letters for numbers, all chose small numbers at random: “ … the first ones 

that came into my head” (TP023). No student in the interview demonstrated use of an 

alphabetic referent, although three survey responses indicated that they had used g = 7 and

b = 2.

Three students in interview explicitly recognised that b – b, or a numerical example,

was zero. Others indicated that b – b made no difference to the equation, implicitly 

recognising the equality relationship: “ … you just add b and you minus it straightaway so 

it doesn’t really matter” (TP023). Several other students in interview gave a similar

response, stating that b – b cancelled out. These students demonstrated an implicit 

understanding of the zero relationship, but through drawing on their understanding of

arithmetic operations rather than recognising the inherent relationship. These students used 

language such as “It’s just a matter of plussing and minusing it” (TP025). One student 

demonstrated this kind of understanding, although using incorrect algebraic notation: “You 

add something and then you take it away. g + b can be gb then if you minus it, it becomes

g” (TP006). The same student’s survey responses showed an R1 response on both 

occasions:

This is true because: g = g + b – b    b is the same number as g  g = g because the b and the b are 

like non-signifigant [sic]; you add it on, and then you take it away again, so g would stay the same

as g.      (TP006, Survey 1)
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If b has input into g, then the answer will become different, but then if b is out putted, then it is back

to normal, so g + b = gb gb – b = g.  eg. if you wrap up a present, it becomes different, because

before you could see what it was, but now you can't, and then when you unwrap it, you can see it, so 

it is back to what it originally was. (TP006, Survey 2)

In the first survey, despite some confusion shown by the statement “ … b is the same 

number as g…”, the student demonstrated emerging understanding of the relationship. The 

second survey response, although coded at the same level, seems to indicate that the 

student is struggling to reach a more complex understanding, with the use of words such as 

input and output. Nevertheless, a concrete example is still needed, albeit a less directly 

related one. The strong visual image of the present suggested that the student used some

visual imagery in her reasoning. This inference was reinforced when the student was asked 

to rewrite the equation so that it would still be true. She substituted triangles and squares 

for g and b. When prompted to use letters, she replied that different letters would “ … be 

like a different picture”.

When the equation was presented to the students rewritten as b + g – b = g, most 

students checked by substituting numbers, carrying out the arithmetic operations from left

to right. Providing the arithmetic was correct, they were assured of the truth of the

statement. When the equation was rearranged as – b + g + b = g, similar results were seen.

A common response was to substitute numbers and compute from left to right in sequence:

– b + g and then add b. Once again, if the arithmetic was right, students felt the equation to

be true.

Student TP023, who used arithmetic language in interview, was one who showed a 

higher level response in the second survey. The initial survey response was “Say if g was 8 

and b was 4. It would be 8 + 4 – 4 = 8. Obviously this is correct.” This response was coded 

as M1 because, although it gave a single example, the inclusion of “say” qualified the

response and indicated an implicit understanding that any number could be used. In the 

second survey the student wrote

For eg: g = 5 b= 14 5+14 – 14 = 5   Whatever the start letter or number in this case is, it will end up

the same number!! b – b + g = g – 3 + 4 + 3 = 4 TP023

This was coded as R1, because there was an explicit stated understanding of the

relationship, although the concrete example was still necessary. It was also noted that the 

numerical example given in the second survey response showed a rearrangement of the 

terms, showing – 3 first. In interview, however, the student did not appear to acknowledge

the rearrangement other than in arithmetic terms.

When presented with – b + g + b = g, two students were particularly uncomfortable

with an equation beginning with a negative number, as shown by the following exchange 

where S indicates the student and I is the interviewer:

S. You usually start with a plus. If it’s minus b then it is nothing and then plus g is g and then plus b 

which means it has to be more than g unless it goes down into decimals but I don’t think it would.

I. So what is the problem with this equation [– b + g + b = g] ?

S. You are taking it away before you plus it because it is minus b first. (TP025)

This student was convinced that the equation was true when she substituted numbers,

but could only proceed arithmetically left to right. She could not provide an alternative 

explanation as to why the equation was true. One other student could not accept an 

equation starting with a negative number: 

Does it start with zero?       (TP014)
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When the interviewer indicated no, the student proceeded:

Say it started on eight, then b equals seven. So it will be one plus g equals nine. Eight minus seven

equals one, plus nine equals two, plus seven equals nine. (TP014)

Not only is the logic very confused, but the student also needed to invent a positive number 

with which to start the equation.

Another student responded to the – b + g + b = g equation by reorganising the letters

when the interviewer asked:

I. Is there anything special that you notice?

S. Not really. Just that it goes b, g, b, g.

I. Just like your minus one, two, one, two?

S. You could probably go [writes] – g + b + g = b (TS009)

Many students rearranged the letters, swapping the b for g, when asked to rewrite the 

original equation (g + b – b = g) in a different way so that it would still be true, At first 

sight, this facility suggests that the students understood the underlying relationship. Not

until they were confronted with – b + g + b =g did it become apparent that they were in 

fact reading the equation from left to right, and not seeing the mathematical relationship

between b and – b.

Discussion

The algebraic thinking and understanding of proof demonstrated by the students in this 

study was consistent with that reported by other researchers. A majority of the responses, 

in both surveys and interviews, offered numerical examples as proof of the statements, in 

keeping with the findings of Carpenter & Levi (2000). Some students did appear to be 

moving towards a more abstract understanding, but these students were in a minority, as

might be expected from students in the upper years of primary school, although there was 

some growth in understanding over the period of the study.

These students appeared comfortable with substituting numbers for letters, possibly 

reflecting common puzzle type activities often experienced in primary schools. They were 

not able, however, in most instances, to explicitly show understanding of the relationship 

that was expressed by the equation g + b – b = g. When they offered numerical

justification, all executed this sequentially from left to right. If they substituted numbers,

most students could articulate in some way that 

b – b was zero, and that – b + b cancelled in the context of g – b + b = g. Only two

students in interview could see the relationship that was the key to the equation when they 

were presented with – b + b. It seems that most students were not seeing the equation as a 

whole, but were reading it as a set of executable instructions.

Of interest also was the apparent lack of understanding of the role of the equals sign. 

No student rearranged the equation in such a way that the position of the equals sign 

changed relative to the letters or numbers used. This is consistent with arithmetic

understanding of equals as a command (Esty & Teppo, 1996), and may reflect a lack of 

experience with different arrangements of arithmetic statements.

The influence of language was seen in some responses. In particular the high incidence 

of left-to-right processing was noticeable, and was more evident when students were

presented with the rearranged equation – b + g + b = g. However, the response of student 

TP023 in the second survey indicated that some students at least were able to consider the 

equation wholistically, even though this same student could not articulate this level of
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sophistication in interview. Teachers need to encourage students to read and write 

arithmetic statements of equality in various forms in order to develop an acceptance of 

unclosed statements.

The students in this study were able to satisfy themselves of the truth of the equation g

+ b – b = g, mainly through numerical substitution. Although still a long way from 

producing a rigorous proof, it seems that students at upper primary level can demonstrate

convincing arguments concerning statements of equality, even when these statements are 

presented in abstract terms.

Acknowledgement

This research was supported by a Faculty Large Research Grant 2003 from the 

University of New England, Faculty of Education, Health and Professional Studies. 

References

Australian Education Council. (1990). A National Statement on Mathematics for Australian Schools. Melbourne: 

Australian Education Council. 

Biggs, J.B. & Collis, K.F. (1982). Evaluating the quality of learning: The SOLO taxonomy. New York: Academic Press.

Biggs, J.B. & Collis, K.F. (1991). Multi-modal learning and the quality of intelligent behaviour. In: H. Rowe (Ed.).

Intelligence: Reconceptualisation and measurement. Hillsdale, NJ: Lawrence Erlbaum.

Carpenter, T., & Franke, M. (2001). Developing algebraic reasoning in the elementary school: Generalisation and proof.

Paper presented at the 12th ICMI Study Conference: The future of teaching and learning algebra, Melbourne. 

Carpenter, T., & Levi, L. (2000). Developing Conceptions of Algebraic Reasoning in the Primary Grades (Research

Report 00-2). Madison: National Center for Improving Student Learning and Achievement in Mathematics and

Science, University of Wisconsin-Madison. 

Dawe, L. (1993). Visual Imagery and Communication in the Mathematics Classroom. In M. Stephens, A. Waywood, D. 

Clarke & J. Izard (Eds.), Communicating mathematics: Perspectives from classroom practice and current research

(pp. 60–78). Melbourne: ACER.

Department for Education and Employment. (1999). Mathematics: The national curriculum for England. London:

Department for Education and Employment.

Esty, W. & Teppo A. (1996). Algebraic thinking, language and word problems. In P. C. Elliott & M. J. Kenney (Eds.),

Communication in Mathematics, K - 12 and Beyond. Reston: National Council of Teachers of Mathematics. 

Küchemann, D. (1981). Algebra. In K. Hart (Ed.). Children’s understanding of mathematics: 11-16. London: John 

Murray.

MacGregor, M. & Price, E. (1999). An exploration of aspects of language proficiency and algebra learning. Journal for

Research in Mathematics Education, 30(4), 449 - 167.

MacGregor, M. (1993). Interaction of language competence and mathematics learning. In M. Stephens, A. Waywood, D.

Clarke & J. Izard (Eds.), Communicating Mathematics: Perspectives from classroom practice and current research

(pp. 51-59). Melbourne: ACER.

MacGregor, M., & Stacey, K. (1997). Students’ understanding of algebraic notation: 11 – 16. Educational Studies in 

Mathematics. 33(1), 1 – 19.

MacGregor, M., & Stacey, K. (1999). A flying start to algebra. Teaching Children Mathematics. 6(2), 78 – 85.

Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran & L. Lee (Eds.). Approaches to 

algebra: Perspectives for research and teaching (pp. 65 - 86). Dortrecht: Kluwer Academic Publishers.

Milton, K., & Reeves, H. (2003). From conjecture to proof. Exploring patterns and relationships leading to ‘proofs’. In

M. Goos & T. Spencer (Eds.) Mathematics – making waves. (Proceedings of the 19th Biennial Conference of the

Australian Association of Mathematics Teachers, pp. 384-386). (CDROM). Brisbane, QLD: AAMT. 

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA:

Author.

Pegg, J. (2003). Assessment in mathematics: A developmental approach. In J. M. Royer (Ed.), Advances in cognition and

instruction (pp. 227-259). New York: Information Age Publishing Inc.

Southwell, M. (2002). Do you need to think to ride the wave? In M. Goos & T. Spencer (Eds.) Mathematics – making

waves. (Proceedings of the 19th Biennial Conference of the Australian Association of Mathematics Teachers, pp.

212-218). (CDROM). Brisbane, QLD: AAMT. 

Reys, R., Lindquist, M., Lambdin, D., Smith, N., & Suydam, M. (2001). Helping children learn mathematics (6th ed.)

New York: John Wiley & Sons. 

158


